# SGR A\* EMISSION PARAMETRIZATIONS FROM GRMHD SIMULATIONS

Richard Anantua,

Collaborators: Sean Ressler and Eliot Quataert (UC Berkeley)

Presentation at San Francisco City College

2-21-2018

# GALACTIC CENTER: HOME SWEET HOME

• The Milky Way hosts a low luminosity active galactic nucleus (AGN) at its center



 The Galactic Center radio source Sgr A at d=7.86kpc (Boehle et al., 2016) has a relatively bright, non-thermal region, Sgr A\*, surrounding a supermassive black hole



- Central black hole mass:  $4 \times 10^6 M_{\odot}$  (Boehle et al. 2016)
- Sgr A\* luminosity:  $L_{SgrA*} = 10^{-9}L_{Edd} 10^{-10}L_{Edd}$  (Sabha et al., 2018);  $L_{SgrA*} \preceq 10^{37}$  erg/s = 2600  $L_{\odot}$  (Narayan et al. 1998)

# BLACK HOLES IN ASTRONOMY

- Remnants of stars >4  $M_{\odot}$  produce black holes when the star runs out of nuclear fuel or degeneracy pressure counteracting gravitational collapse
- If a black hole is formed from a star that was in a binary system, it accretes the companion star, producing x-ray radiation
- Supermassive (10<sup>6</sup>-10<sup>10</sup>  $M_{\odot}$ ) black holes form via mergers and accretion
- Relativistic jets of radiating cosmic rays can be ejected from the poles of black holes in:
  - AGN
  - BH/X-Ray binaries
  - Gamma ray bursts



# BLACK HOLES - OBSERVATIONS

• The Event Horizon Telescope is a collection of radio antennae forming a network of intercontinental baselines to form mm-images



Confer: <u>http://news.nationalgeographic.com/2017/04/black-hole-event-horizon-telescope-pictures-genius-science/</u>

• Baselines of radio telescopes are very long in view of the angular resolution limit:

$$\Delta \theta_{\rm min} = 1.22 \frac{\lambda}{D_{\rm aperture}}$$

# SGR A\* OBSERVATIONS: MASS ACCRETION RATE

- $\dot{M} \lesssim 2 \times 10^{-7} M_{\odot} / \text{yr}$  (Marrone et al. 2007)
- Stars in the inner parsec of the Galactic Center Sgr A\* (Courtesy of UCLA Galactic Center Group): <a href="http://www.galacticcenter.astro.ucla.edu/animations.html">http://www.galacticcenter.astro.ucla.edu/animations.html</a>



WR 124 in Sagittarius



Wolf-Rayet stars, which are hot w./ strong winds, accrete the most onto Sgr A\*

# SGR A\* IMAGE SIZE CONSTRAINTS

Doeleman et al., 2008

- EHT size constraints
  - Intrinsic size:  $37^{+16}_{-10}\mu$ as
  - Scattering size:  $43^{+14}_{-8}\mu$ as

Photon ring?





# SGR A\* OBSERVATIONS: SPECTRAL FLUX DENSITY

- Sgr A\* spectrum from  $10^{10}$ Hz microwaves to  $10^{20}$ Hz X-rays
- Sub-mm ( $\gtrsim 3x10^{11}$ Hz) bump in IR



- Spectral flux density observations
  - 1.3 Jy at 32 GHz in ApJ (Bower et al. 2015)
  - 2.4 Jy at 230 GHz by EHT in Nature (Doeleman et al. 2008)

# SGR A\* OBSERVATIONS

- Low luminosity (L  $\leq 10^{37}$  erg/s = 2600  $L_{\odot}$  (Narayan et al. 1998))
- Low mass accretion rate  $\dot{M} \preceq 2 \times 10^{-7} M_{\odot}/\text{yr}$  (Marrone et al. 2007)
- EHT size constraints
  - Scattering size:  $43^{+14}_{-8}\mu$ as (Doeleman et al. 2008)
- Spectral flux density observations
  - 1.3 Jy at 32 GH in ApJ (Bower et al. 2015)
  - 2.4 Jy at 230 GHz by EHT in Nature (Doeleman et al. 2008)

# QUESTIONS

• Can models of intuitive phenomenological emission mechanisms in general relativistic magnetohydrdynamic simulations reproduce Sgr A\* observations?

 Can a single parametric model describe Sgr A\* emission over regions including disk, disk wind and outflow?

# QUESTIONS

• Can models of intuitive phenomenological emission mechanisms in general relativistic magnetohydrdynamic simulations reproduce Sgr A\* observations?

Some models reproduce some observational signatures better than others

 Can a single parametric model describe Sgr A\* emission over regions including disk, disk wind and outflow?

> Probably– but not the obvious disk or jet emission models, nor simple combinations thereof

# SIMULATION ASSUMPTIONS

- Scales
  - Black hole mass  $M = 4 \times 10^6 M_{\odot}$  (Boehle et al. 2016)
  - Mass accretion rate  $-\dot{M}$  determines normalization of spectral flux summed over intensity maps in various models at a chosen frequency
- Dynamical time for accretion shorter than timescale of Coulomb collisions between leptonic (e+e-) and hadronic plasma (p,ions) => Two-temperature plasma
- Electrons radiate heat more efficiently than protons:  $T_e \ll T_p$

# SIMULATION FLUID EQUATIONS

Mass conservation

$$\partial_\mu(
ho u^\mu) = 0$$

• Energy-momentum equation

$$\partial_{\mu}T^{\mu\nu} = \nabla_{\mu}\left(T_{g}^{\mu\nu} + T_{EM}^{\mu\nu}\right) = -\tau^{\mu\nu}$$

• Stress-energy-momentum tensor with electron heating terms

$$T_{e}^{\mu\nu} = (\rho_{e} + u_{e} + P_{e})u_{e}^{\mu}u_{e}^{\nu} + P_{e}g^{\mu\nu} + \tau_{e}^{\mu\nu} + q_{e}^{\mu}u_{e}^{\nu} + q_{e}^{\nu}u_{e}^{\mu}$$
$$T_{p}^{\mu\nu} = (\rho_{p} + u_{p} + P_{p})u_{p}^{\mu}u_{p}^{\nu} + P_{p}g^{\mu\nu} + \tau_{p}^{\mu\nu}$$

# ENTROPY AND TEMPERATURE

• Entropy per particle

$$s = \frac{\ln P \rho^{-\gamma}}{\gamma - 1}$$

• Vlasov equation and 1<sup>st</sup> moment

$$\frac{\partial f}{\partial t} + \vec{\mathbf{v}} \cdot \vec{\nabla}_{\vec{\mathbf{x}}} f + \frac{q}{m} \left( \vec{E} + \frac{1}{c} \vec{\mathbf{v}} \times \vec{B} \right) \vec{\nabla}_{\vec{\mathbf{v}}} f = 0$$

$$\partial_{\mu}T_{e}^{\mu\nu} = -enu_{e}^{\mu}F_{\mu}^{\nu}, \qquad \partial_{\mu}T_{p}^{\mu\nu} = enu_{p}^{\mu}F_{\mu}^{\nu}$$

• Entropy equation

$$\rho T_e u^\mu \partial_\mu s_e = Q_e - \partial_\mu q_e^\mu - a_\mu q_e^\mu$$

### **KEY PARAMETERS**

• Plasma beta

$$\beta = \frac{P_g}{P_b} = \frac{(\gamma - 1)u_g}{b^2/2}$$

• Bias, or magnetic dominance, N=2n

 $P_g \sim b^{2n}$ 

- Electron heating fraction  ${\rm f}_{\rm e}$ 

$$Q_e = f_e Q$$

# EMISSION MODELS

Equipartition for

Pg~Pb

- Electron temperature model
  - 1) Constant Te/Tp at beta<<1
  - 2) Te suppressed at beta>>1

$$\frac{T_e}{T_{\rm sim}} = f_e \, \exp[-\beta/\beta_c]$$

• Constant  $\beta$  model

$$\beta = \frac{P_g}{P_b} = \frac{(\gamma - 1)u_g}{b^2/2} \Longrightarrow u_g = \frac{1}{(\gamma - 1)}\beta \frac{b^2}{2}$$

• Bias model

$$P_e = K_N \left(\frac{b}{\sqrt{2}}\right)^N$$
,  $K_N = K_2 \frac{\langle \frac{b^2}{2} \rangle}{\langle \left(\frac{b}{\sqrt{2}}\right)^N \rangle}$ ,  $K_2 = \beta$ 

#### POSTPROCESSING: RADIATIVE TRANSFER

• IBOTHROS (Noble et al. 2007) solves general relativistic radiative transfer equations for photon geodesics  $x^{\mu}(s)$  between source and "camera"

$$\frac{dN^{\mu}}{ds} = -\Gamma^{\mu}_{\alpha\beta}N^{\alpha}N^{\beta}, \qquad N^{\mu} = \frac{dx^{\mu}}{ds}$$

• Syncrotron emission and absorption are included in IBOTHROS ray tracing

$$\frac{d\mathcal{I}}{ds} = \mathcal{J} - \mathcal{A}\mathcal{I}, \qquad \mathcal{J} = \frac{j_{\nu}}{\nu^2}, \mathcal{A} = \nu \alpha_{\nu}$$

## POSTPROCESSING: SPECTRA

- GRMONTY (Dolence et al. 2009) computes spectra of hot accretion flows in the Kerr metric
- Synchrotron emission and absorption and Compton scattering included
- The code solves the trajectories of N Monte Carlo sample photons and weighs them by frequency to compute spectra
- GRMONTY converges with rate  $N^{-1/2}$

#### SIMULATION ELECTRON TEMP PROFILES: ELECTRON TEMPERATURE MODEL

• Boundary layer on disk-jet corona have highest T<sub>e</sub> in electron temp models.











 $(f, \beta_c) = (0.5, 1)$ 

Log[T<sub>e</sub>]

Log[T<sub>e</sub>]

[M]

#### SIMULATION ELECTRON TEMP PROFILES: BETA AND BIAS MODELS

Beta and bias model have highest electron temperature in the outflow interior



# SYNTHETIC IMAGES

#### • Electron evolution model image (Log[ $I_{\nu}$ ]) plot for -100M<x,y<100M



### ELECTRON TEMPERATURE MODEL IMAGES

#### • Constant intensity throughout projected region enclosed by disk-jet corona







### BETA MODEL IMAGES

- Beta models light up the extended outflow at low  $\beta$  and small radii (photon ring) at high  $\beta$ 

•  $\beta = 0.01$ ,



 $\beta = 0.1$ 



## EQUIPARTITION MODEL IMAGE

• The equipartition model ( $\beta = 1$ ) lights up a spherical region tens of  $r_{q}$  from the hole



# BIAS MODEL IMAGES

- Bias models light up near the horizon where photon trajectories form rings
  - N=0,







# IMAGES SUMMARY

- Electron evolution model emission is seen throughout the outflow, especially near the photon ring
- Electron temperature model emission is uniform throughout the projected coronal region
- Beta model images incorporate outflow and photon ring emission at low beta (high magnetic pressure), but mostly emission near the photon ring at higher beta
- Bias models images incorporate outflow and photon ring at low N (constant electron gas pressure), and favor photon ring emission from small radii at high N

### COMPARING IMAGES WITH EHT SIZE CONSTRAINT

- Observational EHT size constraints for circular Gaussian emitting region FWHM
  - 5.4M<D<10.6M intrinsic size
  - 7M<D<11.4M scattering size
- Define "emitting region" to be portions of an image plane with intensity at least  $I_{Floor} = f_{Floor} \times I_{max}$
- Take as characteristic length D of the emitting region the diameter of a circular region with area  $A_{\rm Emitting}$
- Take f<sub>Floor</sub> = 0.2, as this was the value required to get emitting regions compact enough to satisfy EHT size constraint in some models

### EMITTING REGION IN ELECTRON EVOLUTION MODEL





### EMITTING REGIONS IN ELECTRON TEMPERATURE MODELS







### EMITTING REGIONS IN BETA AND BIAS MODELS



### EHT SIZE CONSTRAINTS

#### • The model with the most compact emitting region is



# **RESULTS: SYNTHETIC SPECTRA**

• Electron evolution model is a detailed calculation fitting most of data



### **RESULTS: SYNTHETIC SPECTRA**

- Electron temperature ( $f_e$  ,  $\beta_c$ ) models have steeper-than-observed spectrum likely corona-dominated
  - $(f_e, \beta_c) = (0.1, 1)$



$$(f_e, \beta_c) = (0.5, 1)$$



# BETA MODEL SPECTRA

- Beta models have flatter-than-observed spectra near mm-bump, but similar slopes
  to observed spectrum after
  - $\beta = 0.01$ ,



 $\beta = 0.1$ 



# EQUIPARTITION MODEL SPECTRUM

• Equipartition model



# BIAS MODEL SPECTRA

#### • Bias model

• N=0,



#### N=4



### FLATTER SPECTRUM FOR LOWER BETA IN BETA MODELS

• Low  $\beta$  (magnetic pressure dominance) may lead to near-horizon outflow regions dominating emission



### FLATTER SPECTRUM FOR LOWER N BIAS MODELS

N = 0



N = 2



N = 4



# FLATTER SPECTRUM FOR BETA AND BIAS VS ( $f_e$ , $\beta_c$ ) MODELS

- Spectra in models inspired by equipartition (beta and bias) may be dominated by near-horizon outflow emission
- Spectra in electron temperature models may be dominated by disk/corona emission

• (Blandford and Konigl, 1979)



• (Blandford and Konigl, 1979)



#### Synchrotron radiation:

$$N(\gamma) = K\gamma^2$$
,  $\gamma_{min} < \gamma < \gamma_{max}$   
 $\rightarrow \alpha = 1/2$ 

$$u_e = Kmec^2 \ln \frac{\gamma_{\max}}{\gamma_{\min}}$$

- (Blandford and Konigl, 1979)
  - Isothermal jet



#### Synchrotron radiation:

$$N(\gamma) = K\gamma^2$$
,  $\gamma_{min} < \gamma < \gamma_{max}$   
 $\rightarrow \alpha = 1/2$ 

$$u_e = Kmec^2 \ln \frac{\gamma_{\max}}{\gamma_{\min}}$$

#### Assuming equipartition:

$$u_e = k_e \frac{B^2}{8\pi} \ln \frac{\gamma_{\text{max}}}{\gamma_{\text{min}}} \sim \frac{1}{r^2} \rightarrow \text{Isothermal Jet}$$

- (Blandford and Konigl, 1979)
  - Isothermal jet
  - Flat spectrum



GRMHD simulations (Moscibrodska and Falcke, 2013) confirm flat spectrum due to optically thick jet regions

- (Blandford and Konigl, 1979)
  - Isothermal jet
  - Flat spectrum



Higher frequency variability

#### BIAS MODELS WITH BLANDFORD-KONIGL JET

• The N = 0 bias model has constant pressure along the jet,

 $P_e = K_N$ 

which may lead to jet regions dominating emission

•  $P_e \sim b^N$ , N > 0 has electron gas pressure fall off with radius

$$P_e = K_N \left(\frac{b}{\sqrt{2}}\right)^N, B \sim 1/r$$

### ISSUE: LOW FREQUENCY SPECTRUM OVERPRODUCED

- Emission-weighted avg. polar angle (green) from jet axis ranges from
  - ~ 0.4 rad to ~ 0.4 rad for  $10^{9} < \nu /Hz < 10^{11}$
  - ~ 0.4 rad to ~0.6 rad to 0.3 rad for  $10^{11} < \nu /Hz < 10^{16}$
  - ~ 0.3 rad to ~0.5 rad  $10^{16} < v /Hz < 10^{18}$
  - ~ 0.3 rad to ~0.6 rad  $10^{18} < \nu /Hz < 10^{23}$
- Emission-weighted avg. radius (red) from:
  - 200M to 75M for  $10^9 < \nu /Hz < 10^{11}$
  - 75M to 5M for  $10^{11} < v /Hz < 10^{16}$
  - 5M to 100M 10<sup>16</sup>  $< \nu$  /Hz<10<sup>18</sup>
  - 100M to 80M 1018<  $\nu$  /Hz<1023



 $0.5 \, rad = 29^{\circ}$ 

# POSSIBLE REMEDIES

• Excise region beyond r=50M





# CONCLUSIONS

- Our parameterized models reproduce some aspects of Sgr A\* observed morphology (e.g., asymmetry, photon ring) and spectrum (e.g., slope and/or amplitude at lower or higher frequencies than  $v \sim 10^{12}$ Hz bump)
- 230 GHz intensity maps on the scale of tens of gravitational radii appear:
  - Mostly uniform for electron temperature models
  - Mixed outflow/near horizon for equipartition-inspired (beta and bias) models
    - More concentrated around horizon photon ring for increasing  $\beta$  and increasing N
- Synthetic spectra are:
  - Flatter spectra in beta and bias models than electron temperature models
  - More peaked spectra for increasing  $\beta$  and increasing N
- Most compact emitting region for  $\beta$ =0.01, closest to satisfying EHT size constraint

# FUTURE DIRECTIONS

- Sgr A\* variability
- Other EHT sources: M87, 3C 279, Cen A, NGC 1052, OJ 287



# EXTRA SLIDES

### SGR A\* OBSERVATIONS: LUMINOSITY

• Sgr A\* is a low luminosity active galactic nucleus (AGN)

### POSTPROCESSING: RADIATIVE TRANSFER

• IBOTHROS (Noble et al. 2007) solves general relativistic radiative transfer equations for photon geodesics between source and "camera"

$$\frac{d^2 x^{\mu}}{ds^2} = -\Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{ds} \frac{dx^{\beta}}{ds}$$

$$\frac{dN^{\mu}}{ds} = -\Gamma^{\mu}_{\alpha\beta}N^{\alpha}N^{\beta}, \qquad N^{\mu} = \frac{dx^{\mu}}{ds}$$

#### SIMULATION ELECTRON **TEMPERATURE PROFILES** $(f, \beta_c) = (0.1, 0.1)$

#### $(f, \beta_c) = (0.1, 1)$



#### Log[T<sub>e</sub>]



#### Log[T<sub>e</sub>]

# $(f, \beta_c) = (0.5, 1)$



#### **x** [M]

#### $(f, \beta_c) = (0.1, 0.01)$



#### $(f, \beta_c) = (0.1, 0.01)$

**x** [M]







1.618

1.216

0.010

-0.392

-0 794

-1.196

-1.598

2.000



**X** [M]

# **RESULTS: SYNTHETIC IMAGES**

#### BETA MODEL IMAGES

- Beta models light up the extended outflow at low  $\beta$  and small radii (photon ring) at high  $\beta$ 
  - $\beta = 0.01$ ,



 $\beta = 0.1$ 



# **RESULTS: SYNTHETIC SPECTRA**

• Electron evolution model (detailed calculation)









# OTHER OBSERVATIONS

#### • The EHT may show for the BL-Lac M87

- 1) Collimation for inner ~10M
- 2) Strong, ordered B-field

Consistent with: 1.) jet held together by thick disk 2.) powered by BH spin and B-flux threading horizon (Blandford and Znajek, 1977)

## QUESTIONS

 Can a single parametric model describe Sgr A\* emission over regions including disk, disk wind and outflow?

> Probably– but not the obvious disk or jet emission models, nor simple combinations thereof

# BLACK HOLES - OBSERVATIONS

The Event Horizon Telescope is a collection of radio antennae forming a network of intercontinental baselines to form mm-images



- Read: <u>http://news.nationalgeographic.com/2017/04/black-hole-event-horizon-telescope-pictures-genius-science/</u>
- Exercise: Can you explain why baselines of radio telescopes are so long in view of the angular resolution limit below?

$$\Delta \theta_{\rm min} = 1.22 \frac{\lambda}{D_{\rm aperture}}$$

# BLACK HOLES - OBSERVATIONS

The Event Horizon Telescope is a collection of radio antennae forming a network of intercontinental baselines to form mm-images





- Read: <u>http://news.nationalgeographic.com/2017/04/black-hole-event-horizon-telescope-pictures-genius-science/</u>
- Exercise: Can you explain why baselines of radio telescopes are so long in view of the angular resolution limit below?
  - The ability to distinguish diameter

$$\Delta \theta_{\rm min} = 1.22 \frac{\lambda}{D_{\rm aperture}}$$

aration increases with aperture

