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Constraining the chiral magnetic

ettect's ability to generate magnetic
fields in proto-neutron stars

MOTIVATION + CONTEXT

* A neutron star forms as the remnant of a massive (10 - 25 M,) star’s core after a supernova explosion

- Magnetars are neutron stars with incredibly strong magnetic fields (10'*-10"® Gauss; the strongest
magnetic fields in the universe), but the mechanisms by which these fields are produced are currently

poorly understood

Artist's impression of a magnetar (Quanta Magazine)

* A possible explanation for these fields is the operation of a dynamo during the proto-neutron star (PNS)
phase; candidates include convection, differential rotation, and the chiral magnetic effect (CME)

* During neutronization (p + e -> n + V), an asymmetry in number density of left- vs. right-handed
electrons arises, generating a large chemical potential y; the CME converts g to magnetic energy

* This study uses analytical approaches and chiral magnetohydrodynamic (MHD) simulations [run in
Dedalus, a Python numerical PDE solver] to understand the characteristic timescales and maximum

achievable fields from this process

» Specifically addressing a realistically slow (wrt. dynamo timescale) buildup of chemical potential y;
previous literature has overlooked this point (assumes [ is instantly generated)

CHIRAL MHD IN NUMERICAL SIMULATIONS
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* Egs. (1)-(3) above are the traditional MHD equations, with Eq. (4) and the highlighted term in Eq. (1)
being the additions that account for the CME, quantified by the chiral chemical potential p

* Eq. (5) arises from the other four and demonstrates conservation of total chirality

* When the highlighted term in Eq. 1 dominates, B-field grows exponentially (linear PDE); maximum
growth rate in this phase is Ymax = (U?N)/4 (characteristic timescale)

« Other characteristic scales are Bsat = 4/¥ A and the nonlinearity parameter X = An?

- Neutronization rate is quantified by [lp term in Eq. 4 - assumed to be constant linear forcing

PRELIMINARY RESULTS

When the velocity tield is small compared to the B-tield (linear regime), we derive and numerically verity a 1/3 power scaling of B-field with
neutronization rate [ly. Using values of U set by chemical potential and A from HEP [2], we estimate an upper bound of 10'® Gauss for the magnetic field.

DERIVATION OF SCALING

Saturation is achieved when Du/Dt = 0. From Eq. 4, we have: ..
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Example simulation (f=1/10)
Top left: time evolution of volume-ave. p and
helicity (from Eq. 5). M is built up due to
forcing but decreases due to the growth of
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Scaling of Bsa: with neutronization rate [,
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For parameters A = (48T)?, X = 1, o = f A2/10, we vary f linearly from 1/50 to 1/5 to verify our derived power law scaling for Bsat
These values are determined at the point where the time derivative of Y displays a sudden spike (see top right)

103 B; crossing point indicates start of saturation.

Top right: time derivative of M, showing

distinction between forcing-dominated
growth and eventual saturation
Bottom right: 2D slice of By in the xy plane,

towards the end of the simulation

Given the sub-10"® Gauss upper bound, linear chiral effects are insufficient to explain magnetar fields, but may be significant for pulsars. We

expect non-linear effects to be less efticient, and they will be explored next.
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