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ABSTRACT7

We use ray-tracing techniques to investigate the morphology of the black hole shadow and inner8

shadow in the case of emission from thick and thin accretion disks in Schwarzchild and Reissner-9

Nordström spacetimes. Through these models we primarily study the effect of charge, observer in-10

clination, and disk scaling ratio on the size and asymmetry of the inner shadow. We confirm that11

independent radii measurements of the shadow and inner shadow can constrain the mass and charge12

of a target Reissner-Nordström black hole with known viewing inclination. We also replicate these13

results to show similar constraints can be made on charge vs. inclination and charge vs. scale angle14

through the same process of independent measurements of the horizon radius and critical curve radius.15

We conclude that for sufficiently small scale angle, degeneracies between viewing inclination and scale16

angle can result in false constraints on the mass and charge.17

1. INTRODUCTION18

In 2017, The Event Horizon Telescope Collaboration19

(EHTC) made observations of the centers of the galaxy20

M87 and the Milky Way with a global array of radio21

telescopes utilizing Very Long Baseline Interferometry22

(VLBI) observing at 1.3 mm wavelengths (EHTC et al.23

2019a,b; EHTC et al. 2022a). These observations were24

used to produce the first pictures of the near horizon25

region of the black holes M87∗ and Sgr A∗ (EHTC et al.26

(2019a,c); EHTC et al. (2022a,b)). The images depict27

ring-like features of ∼ 40 µas in extent that have asym-28

metrical brightness distributions and are consistent with29

previous theoretical predictions of the appearances of30

black holes (Bardeen 1973; Luminet 1979; Falcke et al.31

2000). These observations allowed the collaboration to32

establish constraints on the mass of M87∗ (see EHTC33

et al. 2019d, for their analysis) and the orientation of its34

spin axis with respect to Earth.35

The ring-like features seen in black hole images are36

predicted to be composed of emission from multiple37

nested photon rings that converge in shape and size to38

a critical curve (Johnson et al. 2020; Gralla & Lupsasca39

2020). The shape and morphology of photon rings are40

agnostic the underlying accretion physics, and are only41

sensitive to black hole mass, spin and charge (Walia42

2024). These features suggest that photon ring mea-43

surements could be used to constrain black hole space44

time parameters. Individual photon rings are, however,45
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likely unresolvable at the current nominal resolution of46

the instrument (reported to be ∼ 25 µas in EHTC et al.47

2019a).48

Another image feature that has been predicted, but49

not yet observed, is the black hole inner shadow. The in-50

ner shadow is associated with the footprint of the jet on51

the black hole horizon seen at mm wavelengths. Chael52

et al. (2021) have suggested the inner shadow could serve53

as an additional probe of black hole space time proper-54

ties. Measurements of the inner shadow would, how-55

ever, require observations with high dynamic range that56

is challenging for the current EHT array.57

Though not currently tractable, observations of the58

first photon ring and inner shadow are likely possible in59

the near future with VLBI observatories like the next60

generation EHT (ngEHT) and the Black Hole Explorer61

(BHEX) (Johnson et al. 2023; Johnson et al. 2024). Ob-62

servations of these image features could therefore serve63

as constraints for measurements of black hole mass, spin64

and charge. Understanding how the size and morphol-65

ogy of these image features are linked to their underlying66

black hole parameters is therefore relevant.67

This work focuses on constraints that can be de-68

rived from measurements of the critical curve and in-69

ner shadow around black holes. We will specifically fo-70

cus on the case of a charged spherically symmetric black71

hole. Though we do not expect astrophysical black holes72

to carry much charge, some of the effects that electric73

charge has on the black hole images are similar to effects74

caused by spin. The additional symmetry afforded by75

our assumption allows for easier interpretation of some76

of these effects.77
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In this paper we use a ray-tracing algorithm we de-78

velop in order to model null geodesics in spherically79

symmetric black hole spacetimes. In section 2, we de-80

scribe the analytical basis behind key image features81

by studying the effective potential along the equatorial82

plane. In section 3, we introduce an analysis of the83

spacetime metric and the relevant derivations of a lens84

equation ( drdϕ ), radial potential (R(r)), and photon tra-85

jectories in the equatorial plane (ϕ(r)). In section 4,86

we utilize an analytical solution to the spherically sym-87

metric Reissner-Nordström spacetime metric tensor to88

generate numerical models using geodesics drawn from89

the observer. Emission is optically thin so photons are90

non-interacting. First we produce a model of the cross91

section of a black hole and accretion disk in 3-D space.92

Then we use the same algorithm to produce isoradial93

contours corresponding to the horizon radius and crit-94

ical curve radius to simulate an image captured by an95

observer. In section 5, we generate a multitude of im-96

ages across a range of charges, inclinations, scale angles97

and mass to distance ratios. Studying these models we98

draw constraints on the inner shadow and shadow mor-99

phology. In section 6, we use 2-D histograms to quantify100

the degeneracy of the inner shadow radius across charge,101

M/D, and scale angle. We normalize the histograms to102

show the probability density of models, which produces103

curves similar to the isoradial constraint curves in sec-104

tion 5.105

2. IMAGES FEATURES OF BLACK HOLE106

ACCRETION SYSTEMS107

We will discuss image features associated with the108

lensing of accretion disks around black holes. We will109

model our accretion as a axisymmetric disk whose emis-110

sion extends down to the horizon. The disk will be taken111

to be thick and have boundaries that can be described112

by two identical, but oppositely oriented cones. The113

thickness of the cones will be parameterized by a ‘scale114

angle‘(or emission angle), c, which describes the angle115

made between a cone and the equatorial plane of the sys-116

tem. A positive scale angle means emission originates117

from a closer point than the equatorial plane, thus re-118

sulting in smaller inner shadow images.119

2.1. Photon Ring, Lensing, Shadow & Inner Shadow120

The photon ring consists of photons in bound orbits121

around a black hole, they can orbit the black hole many122

times before reaching the observer. A helpful feature123

of geodesics is that the path they trace scaterring away124

from a black hole is the same path they trace scattering125

towards a black hole. This means we can trace a geodesic126

backwards from the observer location to the critical127

curve, and observe as it asymptotically approaches a128

bound photon orbit Gralla et al. (2019).129

The critical curve can be found with a method used130

in Luminet (1979). Trajectories on the equatorial plane131

(θ = π
2 ) satisfy the differential equation:132

[
1

r2

(
dr

dϕ

)]2
+

1

r2

(
1− 2M

r

)
=

1

b2
(1)133

134

Where impact parameter b = L/E and the second135

term on the left side can be interpreted as an effective136

potential V (r) with a maximum at rc = 3M .137

b ≤ [v(r)]2 (2)138

139

V (r = 3m) =
1

27M2
(3)140

so bc = 3
√
3M and b > bc trajectories are deflected141

while b < bc trajectories are captured.142

The shadow is the area bounded by the critical curve,143

and the inner shadow is the area bounded by the event144

horizon which corresponds to r = 2M in 3-D space for145

the Schwarzchild (q = 0) case.146

3. FORMALISM147

Here, we derive results that will be used to calculate148

photon geodesics in black hole space times with vari-149

ous astrophysical implications. We assume that the ob-150

server sits at radial infinity, and will only consider null151

geodesics in the black hole exterior that terminate at the152

observer.153

3.1. Null Geodesics in Spherically Symmetric Black154

Hole Space Times155

We will constrain the following discussion to a sub-156

class of static, spherically symmetric, asymptotically flat157

metrics described by a line element with ansatz,158

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2), (4)159

where t is the time coordinate associated with an asymp-160

totic observer far from the black hole, r is the areal161

radius of the space-time, θ and ϕ are the spherical162

inclination and azimuthal angles (see Appendix A for163

Schwarzschild metric). Null geodesics are required to164

have a zero line element, ds2 = 0, and are associated165

with a conserved energy, E, and momentum, L, (see166

Appendix B for details on the derivation).167

Conservation of angular momentum implies that pho-168

ton geodesics are constrained to move in a plane that169

contains the black hole center as a point. If we assume170

that the photon’s plane of motion is the equatorial plane171

of our coordinate choice, then Equation 4 can be brought172

to the form,173

dr

dϕ
=

√
R(r)

b
, (5)174

where,175

R(r) =
E

L

√
r2

(
r2 − f(r)

L2

E2

)
, (6)176
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is the radial potential, and the conserved energy and177

angular momenta are given by178

E = −f(r)ṫ and L = r2ϕ̇. (7)179

The photon trajectories, in the equatorial plane can180

then be written as,181

ϕ(r) =

 
b√
R(r)

dr, (8)182

where
ffl
indicates a path dependent integral, and b = L

E183

is the impact parameter of the photon.184

Equation 8 can be re-parameterized into a non-path185

dependent expression, where we remind the reader that186

we are only considering photon trajectories that termi-187

nate at the asymptotic observer. First, we note that188

there are two types of relevant trajectories whose clas-189

sification depend on the root structure of R(r). Trajec-190

tories with radial potentials whose largest real root is191

behind the horizon—or with no real roots at all—will192

be called “plunging” trajectories, and those with radial193

potentials whose largest real root lies exterior to the194

horizon will be called “scattering” trajectories.195

Plunging trajectories can be expressed as monotonic196

functions in r,197

ϕplunging(r) =

ˆ
b√
R(r)

dr, (9)198

and thus do not have a path dependent integral. Scat-199

tering trajectories, on the other hand, have 2 values200

of ϕscattering associated with each r > rt, where rt is201

the largest real root of R(r), and exactly one value of202

ϕscattering at r = rt. These properties allow ϕscattering203

to be brought into a path-independent form by relat-204

ing it to the pre-image of a parabola. We combine the205

properties of ϕplunging and ϕscattering to define ϕ(x) as,206

ϕ(x) =

ˆ ∞

xi

dϕ

dx
, dx (10)207

with,208

dϕ

dx
=

−2b|x|

(x2 + τ)
√
− (b2)(−2+x2+τ)

x2+τ + (x2 + τ)2
, (11)209

where x is related to r by,210

r = x2 + τ (12)211

and,212

τ =

{
0 plunging

rt scattering
. (13)213

3.2. Reissner-Nordström Black Hole214

We will study some of the image features associated215

with accretion around an electrically charged, spheri-216

cally symmetric black holes. The metric for this black217

hole is described by the Reissner-Nordström solution,218

(Reissner 1916; Weyl 1917; Nordström 1918) with line219

element is given by Equation 4 where220

f(r) = 1− 2M

r
+
Q2

r2
. (14)221

The Reissner-Nordström Black Hole has electric charge222

and no spin. In space, black holes are probably have223

little to no electric charge because any charge would224

quickly attract charged particles of the opposite sign and225

quickly neutralize it.226

The Reissner-Nordström spacetime metric and radial227

potential are:228

gαβ =


−(1− 2M

r + Q2

r2 ) 0 0 0

0 1

1− 2M
r +Q2

r2

0 0

0 0 r2 0

0 0 0 r2 sin θ2


(15)229

R(r) = r2[r2 − b2(1− 2

r
+
Q2

r2
)] (16)230

3.3. Winding Angle231

The winding angle describes the total angular dis-232

placement of a photon as it travels along a geodesic.233

In section 3, we analyze photon trajectories limited to234

the equatorial plane, for this case winding angle ψ(r, b)235

simplifies to ϕ(r, b).236

By generalizing (8) we get an expression for the wind-237

ing angle, ψ:238

ψ(r′, b) =

ˆ r

∞

b√
R(r′)

dr′ (17)239

We can simulate emission from an accretion disk by240

limiting the winding angle to one specified using coor-241

dinates in the bulk 3-D space: θ and ϕ, or θ and φ, the242

latter being the polar angle of a 2-D projection of the243

ray on an image screen at inclination θ0. We used the244

following equations to write the winding angle ψss and245

φ in terms of ϕ and θ:246

ψss = arccos (sin θ0 sinϕ) (18)247

φ = arctan (tanϕ cos θ0) (19)248

We used the root finding method of bisection through249

the Julia package Roots.jl to solve for rs where ψ(r, b) =250

ψ(θ, ϕ). The purpose of this function is to simulate an251

accretion disk from which the photons that reach the252

viewer originated. The radius at which the path of the253

ray is interrupted by the disk is the source radius, rs.254
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3.4. Scale Angle255

Next we modified the winding angle equation to in-256

clude scale angle. This is the angle, c, above the plane257

of the accretion disk.258

θs =
π

2
− c (20)259

3.5. Bridging Coordinate Systems260

In order to construct the models, an understanding261

of which coordinate systems are involved and at what262

stages is important. We want to produce an image in263

the 2-D image plane of an object that exists in 3-D bulk264

spacetime.265

We begin on the image plane in Cartesian coordinates266

(x, y). On the coding level this looks like a meshgrid of267

X by Y pixels. We map the screen Cartesian coordinates268

to screen polar coordinates (φ, b), on the image plane the269

impact parameter, b, becomes our radius coordinate.270

Next we choose our viewing inclination θs, and use θs271

and φ in equation (19) to find ϕs. Finally, we can use θs272

and ψs with equations (18) and (17) to solve for rs, the273

source radius. After solving for rs over all coordinates274

in the meshgrid we can produce contour plots.275

4. MODELING276

Figure 1. Cross section of 3-D black hole geometry. Critical

curve radius in dashed red. Axes are in gravitational units

because this models paths in bulk 3-D space. Geodesics are

draw from a source observer at infinity (along the n = 0

geodesic). Viewing along the geodesic at infinity would re-

veal a lensed image of the black hole, distorting its true size.

Utilizing (11) and simulating equatorial emission we277

examine a cross section of the 3-D black hole geometry278

(Fig. 1). We examine emission from multiple points279

of origin and illustrate how n > 0 lines asymptotically280

converge at the critical curve radius rc.281

Using numerical solutions to photon geodesics around282

a black hole of mass M and charge q = 0, we gener-283

ate isoradial contours of n = 0 scattered photon paths284

and n = 1 captured photon paths to model the black285

hole image features of the shadow (or the photon ring)286

and the inner shadow (Fig. 2). We vary across viewing287

inclination and scale angle to observe changes in inner288

shadow asymmetry and size.289

The photon ring feature is caused by captured n ≥ 1290

orbits. In the spherically symmetric limit, critical curve291

radius is a function ofM and q and therefore its appear-292

ance is always circular regardless of viewing inclination.293

5. CONSTRAINTS294

5.1. Area & Asymmetry295

We observe how inner shadow asymmetry and area296

and changes across viewing inclination. We define ah297

and bh as the inner shadow principle axes (with ah = bh298

when i = 0◦ and ah ≥ bh). We define asymmetry, α:299

αh =
ah
bh

(21)300

We conclude inner shadow asymmetry is agnostic to301

changes in charge q and only dependent on changes in302

viewing inclination i (Fig. 3). The lack of degeneracy303

in asymmetry parameters means it is a reliable way to304

discern our viewing inclination through the image plane.305

We find with increased viewing inclination, image306

plane measurements of the inner shadow area increase307

(Fig. 3). An increase in charge results in a decrease in308

observed inner shadow area. This bears similarity to the309

effects of spin in Kerr spacetime.310

Emission angle, c, has no effect on inner shadow asym-311

metry.312

The geometric impact of non-equatorial emission an-313

gles on inner shadow size is consistent with what we314

would expect from gravitational lensing effects.315

5.2. Charge Vs. Inclination316

Charge, q, and viewing inclination, i, both impact ob-317

served inner shadow area. This degeneracy means that318

there exists multiple combinations of q and i where rh is319

the same. Utilizing ray-tracing models, we predict the320

value of rh and rc for a Reissner–Nordström black hole321

with parameters q = .2 and i ≈ 17◦.322

To constrain q and i we measure rh for all values in323

a 2D grid of q and i. This generates the heatmap (Fig.324

4). Because the critical curve radius depends only on r,325

rc is only dependant upon charge, q. Then we plot all326

combinations that return our target rh and rc, this re-327

sults in two isoradial charge vs. inclination curves that328

must intersect at the real physical values of these param-329

eters, (Fig. 4). By observing the color blocking on the330

heatmap, we can observe how isoradial lines travel across331

the grid. Higher pixel resolution and higher variable332

resolution will increase the smoothness of the heatmap333

gradient and thus reveal isoradial trends clearer.334

5.3. Charge Vs. Mass335

To constrain M/D and q using high resolution ob-336

servations, first measure mean inner shadow radius, r̄h,337
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θs = 20◦, c = 0◦ θs = 20◦, c = 20◦ θs = 80◦, c = 0◦

Figure 2. Critical curve (red, dashed lines) and inner shadow (orange lines) of accretion disks with varying scale angles around

a Schwarzschild black hole as seen by observers at varying inclinations with respect to the symmetry axis of the accretion disk.

The left and right panels show images seen by an observer viewing a thin disk accretion system at inclinations of 20◦ and 80◦

with respect to the symmetry axis of the disk. The center panel shows the images of the same system as the left panel, but for

a thick accretion disk with a scale angle of 20◦. The image of the black hole horizon, a radius of rh = 2GM/c2, in the absence

of gravitational lensing is shown for scale (solid black disk)

Figure 3. (Left) αh vs. i for a neutral (q = 0) Schwarzschild black hole and a Reissner–Nordström black hole with charge

q = .5. The decreasing curve reveals a unique asymmetric value for each inclination. Due to the asymmetry causing an uneven

radius along the lensed horizon, we rely on the average horizon radius rh for later analysis. (Right) Inner shadow area in

gravitational units vs. inclination across 6 different Reissner–Nordström black hole charges. These curves reveal inner shadow

area increases with viewing inclination, the increase is steeper at higher inclinations. They also reveal that area decreases with

charge. This relation is not linear as the difference in size between q = 1 and q = .8 is much larger than q = 0 and q = .2.



6

Figure 4. (Left) Constraints on black hole viewing inclination, i, and charge, q, by independent measurements of the average

radii of the lensed horizon, rh, and critical curve, rc. The input charge was q = .2 and the inclination θ ≈ 20◦. The rc curve is

linear because critical curve radius is independent of viewing inclination. Whereas the rh is jagged, which reveals the necessity

for a higher grid resolution. (Right) Heatmap of all potential rh values across grid of inclinations and charges. There are two

factors that can increase heatmap resolution: pixel resolution (the amount of pixels per variable grid) and variable resolution

(the amount of q or i values we model over).

Figure 5. (Left) Constraints on black hole mass to distance ratio, M/D, and charge, q, by independent measurements of the

average radii of the lensed horizon, rh, and critical curve, rc. The input charge was q ≈ .2 with M/D = 3.78. The curved nature

of both plots reveal how isoradial contours travel along the parameter space of q and M/D. This also means rc is impacted

by both variables. (Right) Heatmap of all potential rh values across grid of mass and charge. We confirm the shape of our

constraint plot by analyzing that larger horizon radius values lie on the bottom right of the plot, and smaller value lies on the

top left. Our constraint curves lie in between these corners, tracing isoradial parameter pairs.
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and mean critical curve radius, r̄c, for all values of a 2D338

grid of M/D and q values with a given viewing inclina-339

tion i = 20◦. Plot all combinations that return a given340

rh and rc, this results in two isoradial mass vs. charge341

curves that must intersect at the real physical values of342

these parameters (Fig. 5).343

Analogous Kerr models by Chael et al. (2021) assume344

equatorial emission, we show how changes in emission345

angle can skew isoradial horizon curves and translate the346

r̄h curve in the q vs. M/D plots (Fig. 6). We conclude347

that for sufficiently small emission angle, degeneracies348

between viewing inclination and emission angle can re-349

sult in false constraints on M and q when fitting data350

to an equatorial model.351

5.4. Charge Vs. Emission Angle352

Using similar techniques, we construct a constraint353

plot across emission angle, c, and black hole charge, q,354

that intends to simulate results from independent obser-355

vations of rh and rc, (Fig. 7). Experimentally, the EHT356

would be most sensitive to positive scale heights which357

result in smaller and brighter inner shadows. Though358

the detector may pick up emission from a negative scale359

height, when researchers extract horizon radius from360

image plane measurements they might not identify the361

negative scale height emission as the inner shadow be-362

cause it would not be bounding the brightness depres-363

sion associated with the horizon. To maintain consis-364

tency with prior constraint plots and to continue to fit365

according to equatorial emission models, I include nega-366

tive scale heights and generate a characteristic isoradial367

curve. The heatmap reveals isoradial curves follow the368

same shape across the grid.369

6. QUANTIFYING INNER SHADOW RADIUS370

DEGENERACY371

We have introduced four distinct parameters that im-372

pact observed inner shadow area, which thus impacts373

calculated inner horizon radius. Black hole charge, q,374

and mass to distance ratio,M/D, impact both the inner375

horizon radius as well as the critical curve radius. Uti-376

lizing a modified version of (2.1) specific to the Reissner-377

Nordström metric, we can the effectuve potential V (q, r)378

to produce an expression for rc(q):379

rc(q) =

√
27− 36q2 + 8q4 + (9− 8q2)

3
2

√
2
√
1− q2

(22)380

Viewing inclination. i, and emission angle, c, both381

only impact inner shadow radius. Luckily, inner shadow382

asymmetry is dependent only on viewing inclination, as383

seen in Figure 3, so theoretically with higher resolution384

we will be able to discern our viewing inclination solely385

through observations of the asymmetry. Emission angle386

impacts inner shadow radius linearly, thus rh(c) can be387

easily recomputed according to a scale factor inversely388

proportional to c.389

Given high resolution independent observations of a390

black hole shadow and inner shadow, after deducing391

inclination angle we are left with some uncertainty in392

M/D, q, and c. We plot a 2-D histogram of all poten-393

tial rh and rc values, then zoom into a region centered on394

rh,observed and rc,observed with a 10% range of error (Fig.395

8). Through this 2-D histogram we observe a bright lin-396

ear ridge, and there appears to be more samples on one397

side than the other. Did this statistical skew arise due398

to our choice of parameter ranges?399

In order to study the probability distribution of po-400

tential inner shadow models, we will trim the master401

histogram and only keep rh values that are within 10%402

of rh,observed, which we calculate using the parameters403

q = .2, c = 0◦, i = 0◦, M/D = 3.78µas. We pro-404

duce three normalized 2-D histograms (Fig. 9) to reveal405

probability regions of high density for all 3 degenerate406

parameters.407

7. CONCLUSION408

Explorations of numerical Reissner-Nordström black409

hole models reveal constraints on the morphology of two410

key image features: the black hole shadow and inner411

shadow. Constraints on these image features are driven412

by their relativistic phenomenology. The inner shadow413

is bounded by the black hole horizon radius. The asym-414

metry of the horizon on the image plane is dependent on415

the viewing inclination of the observer. The area, and416

thus the radius, of the inner shadow decreases with in-417

creasing charge for any constant mass to distance ratio.418

The case is the same for the shadow, whose radius is419

determined by the critical curve radius which is derived420

from the effective potential V (r, q). Charge, q, and mass421

to distance ratio, M/D affect both rh and rc. Emis-422

sion angle, c, and viewing inclination, i, only affect rh.423

We confirm that independent radii measurements of the424

shadow and inner shadow can constrain the mass and425

charge of a target Reissner-Nordström black hole with426

known viewing inclination. These results are analogous427

to Chael et al. (2021), which proves the same constraints428

can be made on a Kerr black hole with mass and spin. I429

replicate these results to show similar constraints can be430

made on q vs. i and q vs. c through the same process of431

independent measurements of rh and rc. By attempting432

to fit rh,observed from emission with some c ̸= 0◦ to a433

model assuming equatorial emission (c = 0◦), we con-434

clude that for sufficiently small emission angle, degen-435

eracies between viewing inclination and emission angle436

can result in false constraints on the mass and charge.437

APPENDIX438
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Figure 6. (Left) False constraints on black hole mass to distance ratio, M/D, and charge, q, by independent measurements

of the average radii of the lensed horizon, rh, and critical curve, rc when emission angle c = 5◦. The input charge was q ≈ .2

with M/D = 3.78 and assuming c = 0◦. The rc curve remains in the same place as in 5.3 which reveals the critical curve radius

is not impacted by emission with some scale angle. The rh curve is shifted to the right towards higher M/D when fitting with

the same values as 5.3 which reveals that c > 0◦ causes a decrease in horizon radius.(Right) Heatmap of all potential rh values

across grid of mass and charge with c = 5◦.

Figure 7. (Left) Constraints on black hole emission angle, c, and charge, q, by independent measurements of the average radii

of the lensed horizon, rh, and critical curve, rc. The input charge was q ≈ .2 with c = 0◦. The rc curve is linear because critical

curve radius is independent of scale angle.(Right) Heatmap of all potential rh values across grid of emission angle and charge.

This heatmap reveals larger values lie in the bottom left corner where charge is small and scale angle is negative.

A. SCHWARZSCHILD BLACK HOLE METRIC439

The spacetime metric and radial potential unique to a Schwarzschild model is:440

gαβ =


−1− 2M

r 0 0 0

0 1
1− 2M

r

0 0

0 0 r2 0

0 0 0 r2 sin θ2

 (A1)441
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Figure 8. (Left) 2-D normalized histogram constructed with all possible values of rh and rc given M/D ∈ [3, 5], q ∈ [0, 1],

c ∈ [0, 15◦], and i = 0◦ (Right) Same histogram zoomed in around calculated rh,observed and rc,observed using the parameters

q = .2, c = 0◦, i = 0◦, M/D = 3.78µas, with a 10% range of error.

q ∈ [0, 1] vs. M/D ∈ [3, 5] c ∈ [0, π/12] vs. M/D ∈ [3, 5] q ∈ [0, 1] vs. c ∈ [0, π/12]

Figure 9. Normalized 2-D histograms (using data from 6) marginalized over key degenerate parameters q, c, and M/D to show

probability density of models that fit within 10% of rh,observed. On the left plot we notice a curve similar to 5.3 which confirms

the shape of an isoradial contour in the 2-D parameter space q vs. M/D. The center plot does not have an analogous constraint

plot but due to the nature of the histogram it should reveal the shape of the isoradial horizon contour on a constraint plot of c

vs. M/D, we would expect the critical curve contour to be a horizontal line similar to in 5.4. The right plot resembles the heat

map in 5.4 but it provides a zoomed in view around a smaller interval. We can see when c becomes too large and thus does not

yield any models within the 10% confidence range.

gαβ =


− 1

1− 2M
r

0 0 0

0 1− 2M
r 0 0

0 0 1
r2 0

0 0 0 1
r2 sin θ

 (A2)442

R(r) = r4 − b2r2 + 2b2r (A3)443

The metric can be written in terms of ds:444

ds2 = −(1− 2M

r
)dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2sin2dϕ2 (A4)445
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B. DERIVING CONSERVATION LAWS446

To derive the the law of conservation of energy and the law of conservation of angular momentum we must write dS447

using the metric tensor:448

dS =
√
gαβdqαdqβ =

√
gαβ

dqα

dτ

dqβ

dτ
dτ (B5)449

Then we take the variation and set it equal to 0:450

δS =

ˆ
δL dτ =

ˆ
δL′

L
dτ = 0 (B6)451

L′ = (1/2)gαβ q̇
αq̇β = 0 (B7)452

Convert to Hamiltonian coordinates:453

L′ =
1

2
gαβ q̇

αq̇β = H =
1

2
gαβpαpβ = 0 (B8)454

By writing the action in terms of the Hamiltonian, we can define two important relationships (B11):455

S =

ˆ
Ldτ =

ˆ
(pq̇ −H)dτ (B9)456

δS = 0 → (q̇ − ∂H

∂p
)δp+ (δq̇p− ∂H

∂q
δq = 0 (B10)457

∂H

∂p
= q̇,

∂H

∂q
= −ṗ (B11)458

Next we evaluate ∂H
∂q with q = ϕ and q = t, keeping in mind what components define the metric tensor:459

gαβ(r, θ) → ∂H

∂ϕ
= −ṗϕ = 0,

∂H

∂t
= −ṗt = 0 (B12)460

These respective results prove angular momentum is conserved, and energy is conserved over time.461
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