Home

         

Richard Anantua pictured above with Brian Greene, Neil deGrasse Tyson and Bill Nye the Science Guy.

I am a high-energy astrophysics postdoctoral fellow in Eliot Quataert’s group at UC Berkeley modeling emission from Sagittarius A* at the Galactic Center. Accretion disk simulations revealing plasma behavior such as the decreasing of electron temperature with the ratio beta of gas-to-magnetic pressure inform semi-analytic calculations of images as seen in Fig. 1.

I am also “observing” simulations of relativistic jets– a continuation of my PhD work across the SF Bay at Stanford under Prof. Roger Blandford.

LinkedInProfileStanford  

My first year as a graduate student at Stanford featured a combination of coursework and research providing a working knowledge of modern approaches to quantum gravity. Upon gaining background in renormalization and conformal field theory from Quantum Field Theory I, II and III and rotating under Leonard Susskind, Shamit Kachru and Sean Hartnoll of the Stanford Institute for Theoretical Physics (SITP), I focused on using the holographic correspondence to determine whether a Fermi surface (or similar phenomena) exist in strongly coupled field theories with supersymmetry. With Martin et al., I used gauge-gravity duality to find current-current correlators and the associated spectral weight for a superconformal field theory dual to a D3-D5 brane system in the background of type IIB string theory (see Publications).

During my second year, my focus shifted to theoretical physics at lower energy scales relevant to observations. I joined the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) under adviser Roger Blandford (Fellow of the Royal Society and National Academy of Sciences).

Since returning from Harvard to start the third year of my doctorate, I have been working towards rendering the output of 3D general relativistic magnetohydrodynamic simulations (e.g., from Jonathan McKinney) of jets from black holes with accretion flows in a manner that mimics or surpasses image resolution from existing or planned astrophysical surveys (e.g., Event Horizon Telescope). For constant observer time movies of jet/accretion disk/black hole simulations with various emission and absorption prescriptions.

My broad research interests include: theoretical cosmology, high energy theoretical astrophysics (e.g., Blandford-Znajek jets from supermassive black holes), high energy theoretical particle physics (e.g., string theory (esp. AdS/CFT correspondence)), condensed matter theory (e.g., strongly correlated fermionic systems with holographic dual)

 

Fig. 1

       

Images of an inner accretion disk with electron temperature model

T_e/T_sim=~f*exp((-(Ug/3.0)/(bSq/2.0))/beta_c)

An overall prefactor f in electron-to-ion temperature ratio decreases from top to bottom rows and a critical value of beta increases from left to right.

 

2 thoughts on “Home

  1. Dear Rich,
    Congratulations for all all your efforts and sacrifices. Your life is not always easy. God gave you strength and courage to accomplish your goals and I hope you have success in whatever you do. You deserve all good things in your life.
    Your mother,
    Bernadette

Leave a Reply

Your email address will not be published. Required fields are marked *